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Abstract Olmesartan medoxamil (OLM, an angiotensin II
receptor blocker) and amlodipine besylate (AML, a dihy-
dropyridine calcium channel blocker), are co-formulated in
a single-dose combination for the treatment of hypertensive
patients whose blood pressure is not adequately controlled
on either component monotherapy. In this work, four mul-
tivariate and two univariate calibration methods were ap-
plied for simultaneous spectrofluorimetric determination of
OLM and AML in their combined pharmaceutical tablets in
all ratios approved by FDA. The four multivariate methods
are partial least squares (PLS), genetic algorithm PLS (GA-
PLS), principal component ANN (PC-ANN) and GA-ANN.
The two proposed univariate calibration methods are, direct
spectrofluorimetric method for OLM and isoabsorpitive
method for determination of total concentration of OLM
and AML and hence AML by subtraction. The results
showed the superiority of multivariate calibration methods
over univariate ones for the analysis of the binary mixture.
The optimum assay conditions were established and the
proposed multivariate calibration methods were successfully
applied for the assay of the two drugs in validation set and
combined pharmaceutical tablets with excellent recoveries.
No interference was observed from common pharmaceutical

additives. The results were favorably compared with those
obtained by a reference spectrophotometric method.
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Introduction

Olmesratan medoxamil (OLM, Fig. 1) is chemically known
as (5-methyl-2-oxo-1,3-dioxolen-4-yl)methoxy-4-(1-
hydroxy-1-methylethyl)-2-propyl-1-{4-[2-(tetrazol-5-yl)-
phenyl] phenyl}methylimidazol-5-carboxylate. It is a potent
and selective angiotensin AT1 receptor blocker. [1] It has
been approved for the treatment of hypertension in the
United States, Japan and European countries. The drug
contains a medoxomil ester moiety which is cleaved rapidly
by an endogenous esterase to release the active olmesartan.
[2] There are various methods for analysis of OLM alone or
in combination with other drugs. These methods include
spectrophotometry [3–9], spectrofluorimetry [8], HPTLC
[10], Mass [11], LC–MS–MS [12], CZE [13, 14], and
HPLC [15, 16].

Amlodipine besylate (AML, Fig. 1) is chemically known as
3-ethyl-5-methyl 2-(2-aminoethoxymethyl)-4-(2-chlorophenyl)-
1,4-dihydro-6-methylpyridine-3,5-dicarboxylate benzene sulph-
onate. It is a dihydropyridine calcium channel blocker used in the
treatment of hypertension and angina pectoris [17]. AML is
official in the British Pharmacopoeia (BP) which describes
HPLC for its assay in the bulk powder [18]. Several analytical
methods have been reported for the determination of AML in
pharmaceutical formulations and/or biological fluids. These
methods include spectrophotometry [19–21], spectrofluorimetry
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[22, 23], anodic stripping voltammetry [24, 25], HPLC [26–31],
HPTLC [32], capillary electrophoresis [33] and micellar electro-
kinetic chromatography [34].

Recently, OLM has been marketed in combination with
AML in tablet dosage form (Olmesar® tablets). The oral
administration of this combination has been proved to be
more effective than either of the two drugs in a single-drug
therapy for treatment of hypertension [35]. Few methods are
available for the simultaneous analysis of OLM and AML
combination. These methods include spectrophotometry
[35–42], HPLC [36, 43, 44] and TLC [44]. These methods
suffered from lower sensitivity and selectivity (e.g. UV-
based spectrophotometry), employed intensive instrumenta-
tion (e.g. HPLC) or need laborious manipulation (e.g. TLC).

Spectrofluorimetric technique is characterized by its inher-
ent high sensitivity, improved selectivity, practical simplicity,
and wide availability of in quality control laboratories. How-
ever, to the best of our knowledge, based on extensive litera-
ture survey, no attempt has yet been made to employ
spectrofluorimetry for the simultaneous determination of
OLM and AML. Moreover, the reported techniques analyzed
only one ratio for this combination (4:1), while FDA approved
other two ratios (2:1 and 8:1). Therefore, the aim of this work
was directed to develop simple, sensitive and selective

spectrofluorimetric methods for the simultaneous determina-
tion of OLM and AML in their combined dosage form in all
FDA approved ratios. At first glance, OLM and AML binary
mixture appeared to be simple mixture that can be easily
resolved by classical univariate methods such as direct and
isoabsorpitive methods. However, experimental analysis
revealed difficulties in resolving such mixture by these meth-
ods. Hence multivariate calibration methods such as PLS and
ANN could be methods of choice.

Experimental

Apparatus

Fluorescence measurements were carried out on a RF-3501
version 3.0 spectrofluorimeter (Shimadzu Corporation
Kyoto, Japan) equipped with a 150 W xenon lamp and
1 cm quartz cells. The slit widths for both the excitation
and emission monochromators were set at 5.0 nm. The
calibration and linearity of the instrument were frequently
checked with standard quinine sulphate (0.01 μg mL─1).
Wavelength calibration was performed by measuring λexc
at 275 nm and λem at 430 nm; no variation in the wavelength
was observed. All recorded spectra converted to ASCII
format by RFPC software. Hanna pH-Meter (Romania)
was used for pH adjustments.

Software

All multivariate calibration methods were implemented in
Matlab® 7.1.0.246 (R14). PLS, GA-PLS, GA-ANN and
PC-ANN were carried out by using PLS toolbox software
version 2.1 in conjunction with Neural Network toolbox.
The t test, F test and ANOVA test were performed using
Microsoft® Excel. All calculations were performed using
intel ®core ™ i5-2400, 3.10 GHz, 4.00 GB of RAM under
Microsoft Windows 7.

Materials

OLM was obtained from AK Scientific Inc. (CA, USA).
AML was obtained from Pfizer Inc. (New York, USA). The
purities of OLM and AML were 99.5 %. Olmesar® tablets
(Macleods Pharmaceutical Ltd., Mumbai, India) labeled to
contain 5 mg of AML and 20 mg of OLM (Batch No:
PM00058803). Double distilled water was obtained through
WSC-85 water purification system (Hamilton Laboratory
Glass Ltd., KY, USA) and used throughout the work. A
phosphate buffer solution (pH 5, 0.1 M) was employed for
pH adjustment. All solvents and materials used throughout
this study were of analytical grade.
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Fig. 1 Chemical structures of olmesartan medoxomil (OLM) and
amlodipine besylate (AML)
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Preparation of OLM and AML Standard Solutions

Stock solutions of OLM (200 μg mL−1) and AML
(200 μg mL−1) were prepared separately by dissolving 20 mg
of each of OLM and AML in 100 mL methanol. Appropriate
volumes of these stock solutions were diluted with distilled
water to giveworking solutions of 40 and 10μgmL−1 for OLM
and AML, respectively. Stock and working solutions were
stable for at least 2 weeks when stored refrigerated at 4 °C.

Preparation of Pharmaceutical Tablets Sample Solutions

Olmesar® tablets were weighed and finely powdered. An ac-
curately weighed portion of the powder equivalent to 40 mg of
OLM and 10 mg of AMLwas extracted into methanol with the
aid of shaking and the methanolic extract was filtered. The
filtrate was diluted with methanol to obtain final concentrations
of 200 and 50 μg mL−1 for OLM and AML, respectively.
Aliquots of Olmesar® tablet solution were diluted with water
to obtain working solution of 40 and 10 μg mL−1 for OLM and
AML, respectively. To prepare tablet extract containing 40 μg
of OLM and 20 μg of AML ( 2:1), 80 μg of OLM and 10 μg of
AML (8:1), standard solutions of AML and OLM were added
respectively to Olmesar® tablets. Spectral acquisition and the
calculations were performed in the samemanner as described in
“Calibration Procedures”.

Calibration Procedures

– Univariate calibration procedures

Aliquots of standard working solutions equivalent to 0.4–
3.2 μg mL−1 of OLM and AML were transferred into a
series of 5-mL volumetric flasks. 2 mL of 0.1 M phosphate
buffer of pH 5.0 was added and the solutions were diluted to
the volume with water and mixed well. Fluorescence spectra
of the solutions were recorded from 220 to 600 nm using
λexc at 251 nm and stored in the computer. Fluorescence
Intensity (FI) of emission spectra was measured at 375 nm
and 431 nm (isoabsorpitive point) for determination of
OLM and total concentration of OLM and AML respective-
ly (AML can be determined by subtraction). The calibration
graphs were constructed by relating the FI at mentioned
wavelengths to the corresponding concentrations of OLM
and AML (or OLM) respectively. The regression equations
for the data were computed.

– Multivariate calibration procedures

Five level, two factor calibration design [45] was used for
construction of 25 samples by transferring different volumes
of OLM and AML from their standard working solutions
into 5-mL volumetric flasks then 2 mL of phosphate buffer
(pH5.0, 0.1 M) was added and the solutions were diluted to

the volume with water and mixed well ( Table 1). The
last 15 samples were used to build the multivariate
calibration models (training set) while the first 10 sam-
ples were used to test the predictive ability of the
proposed models (validation set). Concentrations chosen
for each compound in the 25 samples were based on;
calibration range of each of the two drugs and the ratio
of OLM to AML in the pharmaceutical product ap-
proved by FDA (8:1, 4:1 and 2:1).

The emission spectra of the 25 samples were scanned
from 300 to 600 nm using λexc at 251 nm and stored in the
computer. The 2D Scores plot for the first two PCs of the
whole concentration matrix was obtained to confirm the
well position of the mixtures in space, orthogonality, sym-
metry and rotatability [45] as indicated in Fig. 2. Mean
centring of the data proved to be the best preprocessing
method for getting the optimum results.

Overview for Multivariate Calibration Methods

– Partial least squares regression (PLS)

PLS method involves the decomposition of the experi-
mental data, such as spectrofluorimetric data in our case,
into systematic variations (latent variables) that explain the
observed variance in data. The purpose of PLS method is to
build a calibration model between the concentration of the
analytes under study (OLM and AML in our case) and the
latent variables of the data matrix. PLS performs the decom-
position using both spectrum data matrix and analyte con-
centration [46].

Including extra latent variables in the model increases the
possibility of the known problem of overfitting. Therefore

Table 1 The 5 level 2 factor experimental design of the training and
validation set mixtures shown as concentrations of the mixture compo-
nents in μg mL−1

Mix No. OLM AML Mix No. OLM AML

1 3.2 0.4 14 2.4 1

2 3.2 0.6 15 2.4 1.2

3 3.2 0.8 16 2 0.4

4 3.2 1 17 2 0.6

5 3.2 1.2 18 2 0.8

6 2.8 0.4 19 2 1

7 2.8 0.6 20 2 1.2

8 2.8 0.8 21 1.6 0.4

9 2.8 1 22 1.6 0.6

10 2.8 1.2 23 1.6 0.8

11 2.4 0.4 24 1.6 1

12 2.4 0.6 25 1.6 1.2

13 2.4 0.8
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optimization of number of the latent variables is a critical
issue in PLS method

& Optimisation of number of latent variables for PLS model

Cross validation (CV) [46] was applied to predict how
many are the optimum number of PLS latent variables. CV
involves repeatedly dividing the data into two sets, a train-
ing set used to determine a model and a test set to determine
how well the model performs so that each sample (or portion
of the data) is left out of the training set once only.

Leave one out (LOO) CV is used in our study for opti-
mizing the number of PLS components, by building the
model using I-1 samples set (training set consisting of 14
samples) to predict the one sample left (validation sample).
The root mean square error of CV (RMSECV) is calculated as

RMSECV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

I

X

I

i¼1

ci � ĉAi cvð Þ2
v

u

u

t

where I is the number of objects in the calibration set, ci is the
known concentration for sample i and ĉAi cv is the predicted
concentration of sample i using A components. Mean centring
was performed on the training set each time successive sam-
ples were left out.

– Genetic Algorithm

Genetic algorithms (GA) [47–50] have been used to solve
difficult problems with objective functions that do not possess
‘nice’ properties such as continuity, differentiability… etc.
These algorithms maintain and manipulate a family, or popu-
lation, of solutions and implement a ‘survival of fittest’ strat-
egy in their search for better solutions.

GA searches the solution space of a function through the
use of simulated evolution, i.e. the survival of the fittest
strategy. GA have been shown to solve the optimization

problem by exploring all regions of the potential solutions
and exponentially exploiting promising area through muta-
tion, crossover and selection operation applied to individu-
als in the populations. A complete discussion of genetic
algorithms can be found in the literature [50–52].

GA can be used successfully for wavelength selection. GA
consists of five steps: A-Initiation: different combinations of
wavelengths are generated randomly; each combination rep-
resents a possible solution. Each wavelength in the spectrum
is assigned randomly a value of 1 or 0, where 1 indicates
selection and 0 indicates omitting. B- Evaluation: each differ-
ent chromosome is used to construct the model and cross
validation is used to evaluate the prediction error of each
chromosome. C-Exploitation: selection of good chromo-
somes. D- Exploration: recombination of good genes. E-
Mutation: changing chromosomes locally to hopefully form
better chromosomes. The new chromosomes produced are
tested again for performance and the algorithm continues until
a certain number of generations are produced.

& Optimisation of parameters of Genetic Algorithm

A critical issue of successful GA performance is the
adjustment of GA parameters. The parameters are: the max-
imum number of generations, the number of wavelengths in
a window, percent genes included at initiation, the mutation
rate, breeding cross over rule and percent of population the
same at convergence. Other parameters to be chosen by the
user are: maximum number of latent variables for the PLS,
cross validation type random or contiguous blocks, number
of subsets to divide data into for cross validation, number of
iterations for cross validation at each generation. The con-
figuration of GA parameters was shown in Table 2.

– Neural networks

Artificial neural network (ANN) is a type of artificial
intelligence method that resembles biological nervous system
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Fig. 2 Scores plot for the mean centred 25 samples concentration
matrix of the five level two component experimental design

Table 2 Optimum parameters of the genetic algorithms GA

Parameter Value

Population size 20

Maximum generations 50

Mutation rate 0.005

The number of variables in a window (window width) 2

Per cent of population the same at convergence 100

% wavelengths used at initiation 50

Crossover type Single

Maximum number of latent variables 2

Number of subsets to divide data into for cross
validation

4

number of iterations for cross validation at each
generation

2
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in having the ability to find the relationship between inputs
and outputs. ANN is composed of elements called artificial
neurons that are interconnected by connections calledweights.
Commonly neural networks are trained, so that a particular
input leads to a specific target output. The network is adjusted,
based on a comparison of the output and the target, until the
network output matches the target. Typically many input/
target pairs are used to train a network [53].

ANN has a great advantage over other traditional multivar-
iate methods in modeling linear and non-linear relationship
between variables. There are many papers that describe the
application of ANN on linear and non-linear data [54, 55].

The type of ANN used in this paper is feed-forward
model which was trained with the back propagation of
errors learning algorithm. The back-propagation ANN is
used in signal processing, data reduction and optimization,
interpretation and prediction of spectra and calibration [55].
It is composed of three layers, an input layer in which the
input data are introduced (e.g. fluorescence intensities in
spectrofluorometry). These inputs are passed to second hid-
den layer in which inputs are corrected and adjusted by
weights and then finally passed to outer most layer (output
layer) to give outputs (e.g. concentrations). The connections
(weights) between layers are passed forward (from input to
output layer), so it is called feed-forward ANN. The outputs
(predicted concentrations) are compared with targets (actual
concentrations) and the difference between them is called
the error which is back propagated (and so called feed-
forward ANN with the back propagation of errors learning
algorithm) to network once more to be minimized through
further adjustment of weights. ANN is iterated several times
in such way till the error reaches a minimum value.

In this paper, ANN models preceded by principal com-
ponent analysis (PC-ANN) and GA (GA-ANN) as input
data reduction procedures were applied.

& Optimization of parameters of ANN

For proper training of ANN model, several parameters
have to be optimized. There are two transfer functions used
in ANN, one between input and output of a node in the hidden
layer and the other is applied in output layer. The use of these
functions depends on relationship between the inputs and
outputs. Tan sigmoid followed by purelin are commonly used
for non-linear systems while purelin-purelin transfer functions
are used for linear one (as in our case).

Among other ANN parameters, the hidden neurons num-
ber (HNN) is related to the converging performance of the
output error function during the learning process. The learning
coefficient (Lc) controls the degree at which connection
weights are modified during the learning phase. The learning
coefficient decrease (Lcd) and learning coefficient increase
(Lci) control the variation of Lc value. It varies as a function of
performance of the ANN (the Lc decreases or increases with

the mean square error). For optimization of the ANN
parameters, many experiments have to be done through which
we can improve the model performance. Optimized ANN
parameters are summarized in Table 3.

Results and Discussion

Olmesar® tablets are combined dosage form containing the
angiotensin II receptor blocker OLM and the calcium chan-
nel blocker AML. It has been used in the treatment of
hypertension. The ratio of OLM to AML in Olmesar®
tablets is 4:1. FDA approved this combination in three
ratios, 2:1, 4:1 and 8:1. So this study was designed to
develop simple, robust and accurate multivariate calibration
methods for the simultaneous determination of OLM and
AML in all ratios approved by FDA. Because of the inherent
high sensitivity, improved selectivity, practical simplicity,
and wide availability of spectrofluorimetry in quality control
laboratories, it was attempted in this study. Another goal of
this study was to show the superiority of multivariate cali-
bration methods over univariate calibration ones even for
binary mixture that seems to be simple to be resolved as in
our case study.

– Spectral characteristics and optimization of assay
conditions

Both of OLM and AML exhibited native fluorescence in
aqueous phosphate buffer (pH 5, 0.1 M) with λemission at 375
and 455 nm for OLM and AML, respectively, after excita-
tion of both drugs at 251 nm (Fig. 3). The conditions for the
emission spectra of both OLM and AML were optimized.

Different experimental parameters affecting the emission
spectra were carefully studied and optimized. Such factors
were changed individually while others were kept constant.
These factors included pH, buffer volume, type of the dilut-
ing solvent and stability time.

& Effect of pH

The influence of pH on the FI and fluorescence range of
the OLM and AML was studied using phosphate buffer
covering the pH range from 1.0 to 7.0 only because at basic
pH, OLM hydrolysed (as a prodrug) to the olmesartan
moiety that did not exhibit fluorescence [8]. pH had no
effect on AML emission spectra. On the other hand OLM
emission spectra changed versus pH range. Sequentially two
different emission wavelengths were observed for OLM
over pH ranges from 1.0 to 7.0. Maximum excitation and
emission wavelengths were 251 and 417 nm in the pH 1.0,
251 and 375 nm in the pH range 1.5 to 7.0, the fluorescence
intensity of OLM did not change from pH 1.0 to 3.0 and
decreased markedly from pH 3.0 to 6.0 and ceased totally at
pH 7.0. This behavior at neutral and basic pH was attributed
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to its hydrolysis (as a prodrug) to the olmesartan moiety that
did not exhibit fluorescence [8] (Fig. 4). Therefore, phosphate
buffer of pH 5.0 was used throughout the study to allow the
incorporation of all ratios of OLM and AML especially 8:1.

& Effect of buffer volume

The effect of phosphate buffer volume on the fluores-
cence intensity of OLM was studied. It was clear from Fig. 5
that 2 mL of phosphate buffer was sufficient to reach max-
imum FI for OLM.

& Effect of diluting solvent

Dilution with different solvents including water, metha-
nol, ethanol, and acetonitrile was employed. Among the all
tested solvents water gave the highest FI compared with the
other solvents (Fig. 6). This may be attributed to change in
the medium polarity that may result in physical interaction
between these solvents and the excited singlet state of the
drug molecules Thus, water was chosen as the diluting
solvent throughout the study.

& Effect of time

The effect of time on the stability of the fluorescence
intensity of the drugs was also studied. It was found that the
FI developed instanteously and remained stable for at least
1 hour (Fig. 7).

– Univariate calibration methods

By examining emission spectra of both OLM and AML,
it was clear that OLM can be determined directly by mea-
suring FI at λ em of 375 where AML did not interfere
(Fig. 3). For AML, isoabsorptive method was applied for
determination of total concentration of OLM and AML by
measuring FI at λ emission 431 nm (Fig. 8) and by subtrac-
tion, AML can be determined solely. The calibration graphs
were constructed by relating the FI at mentioned wave-
lengths to corresponding drugs concentrations and the re-
gression equations were:

ForOLM : FI375 ¼ 220:25C1 þ 38:14ðr ¼ 0:9980Þ

Table 3 Optimized parameters of ANN

Method GA-ANN PC-ANN

Drugs OLM AML OLM AML

Architecture 67-4-1 18-2-1 2-1-1 2-1-1

Hidden neurons number 4 2 1 1

Transfer Functions Purelin-purelin Purelin-purelin Purelin-purelin Purelin-purelin

Learning coefficient 0.001 0.001 0.001 0.1

Learning coefficient decrease 0.1 0.1 0.1 0.001

Learning coefficient increase 10 10 10 100

Fig. 3 Excitation (solid lines) 1 and emission (dashed lines) for OLM
(1 and 2) and AML (3 and 4). Concentrations of both OLM and AML
were 1 μg mL−1 in phosphate buffer solution (pH 5, 0.1 M) Fig. 4 Effect of pH on FI of OLM (1 μg mL−1) and AML (1 μg mL−1)
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ForAML : FI431 ¼ 61:04C2 þ 29:40ðr ¼ 0:9995Þ
where FI was fluorescence intensity of the emission spectra,
C1 and C2 were the concentrations of OLM and AML +
OLM in μg mL−1, respectively, and r was the correlation
coefficient. To assess the specificity of the proposed univar-
iate calibration methods, OLM and AML were determined
in laboratory prepared mixtures containing different ratios
of the two drugs. It was obvious that on increasing concen-
tration of AML in the mixtures, recovery % of OLM de-
creased (Table 5). This may be attributed to the self
absorption of emission radiation of mixture at 375 nm by
AML because AML had maximum excitation at 360 nm
(post inner filter effect). For determination of AML, FI was
measured at isoabsorpitive point (431 nm) to determine total
concentration of OLM and AML then by subtraction, AML
was determined solely. It was noticed that on decreasing
total concentration of two drugs, slight shift occurred at

isoabsorpitive point from 431 nm to 432 nm as depicited in
Fig. 8. This shift affected the recovery% of total concentration
and hence AML soAML recovery%was not good (105.66%
±2.326) as shown in Table 5. From above discussion, it was
clear that univariate methods had limitations that led us to
analyze this mixture by multivariate calibration methods.

– Multivariate calibration methods

Four chemometric methods – PLS, GA-PLS, GA-ANN and
PC-ANN– were applied for the simultaneous determination of
OLM and AML in combined dosage form in all ratios
approved by FDA. In general, this study was primarily
designed to present the proposed multivariate methods as
attractive alternatives for classical univariate calibration
methods in handling fluorescence spectral data. Secondary,

Fig. 5 Effect of volume of phosphate buffer on FI of OLM
(1 μg mL−1)

Fig. 6 Effect of the type of diluting solvents on FI of OLM
(1 μg mL−1) and AML (1 μg mL−1) in phosphate buffer solution (pH
5, 0.1 M)

Fig. 7 Effect of time on FI of OLM (1 μg mL−1) and AML
(1 μg mL−1)

Fig. 8 Emission spectra of 0.4 μg mL−1, 0.8 μg mL−1 and 1.2 μg
mL−1 of AML and OLM showing isoabsorptive points at 432, 431.5
and 431 nm respectively
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comparing variable selection procedure (GA) versus data
compression procedure (PC) and their effect on increasing
predictive power of PLS and ANN models. Ultimately,
analyzing OLM and AML pharmaceutical preparations in
all FDA approved ratios.

& Optimization of parameters of multivariate calibration
models

The purpose of multivariate methods is to build a cali-
bration model between the concentration of the analytes
under study (OLM and AML in our case) and the experi-
mental data (FI in our case). The first step in model building,
involves constructing the calibration matrix for the binary
mixture. In this study calibration set was optimized with the
aid of the five level two factor design [45] resulting in 25
sample mixtures. Table 1 show the composition of the 25
sample mixtures. Upon designing the calibration set, ratios
of OLM to AML in combined dosage form that approved by

FDA has been taken into account as in mixture number 1
( 8:1), mixtures number 3, 12, and 21 (4:1) and mixtures
number 15, 19 and 23 (2:1). These 25 sample mixtures were
splitted to 15 training mixtures (for building the models) and
10 validation mixtures (for measuring predictive power of
the models).

For PLS model, calibration was done by performing the
decomposition of experimental data matrix into latent vari-
ables using both FI data matrix and analytes concentration
matrix [46].

The emission spectra of these mixtures were collected
and examined; the near zero FI in the regions; above 500 nm
for both analytes and 300–400 nm for AML accounted for
the rejection of these parts from the emission spectra. After
manipulation of data matrices, PLS method was run for
optimizing the number of latent variables using leave one
out (LOO) CV and RMSECV was calculated as mentioned
above. The selection of the optimum number of latent

Table 5 Analysis results for the prediction of the independent validation test set by all the proposed methods

Method Univariate calibration
methods

Multivariate calibration methods

Direct Isoabsorptive PLS GA-PLSR GA-ANN PC-ANN

OLM
(μg ml−1)

AML
(μg ml−1)

OLM R% AML R% OLM R% AML R% OLM R% AML R% OLM R% AML R% OLM R% AML R%

3.2 0.4 98.36 104.32 99.38 105.00 99.38 105.00 99.06 102.50 99.69 105

3.2 0.6 96.48 104.92 99.06 101.67 99.06 101.67 99.06 103.33 99.38 101.67

3.2 0.8 95.82 107.89 99.06 101.25 99.06 101.25 100.00 100.00 99.38 101.25

3.2 1 95.16 108.24 99.06 102.00 99.06 102.00 99.06 103.00 99.38 101

3.2 1.2 92.4 104.36 96.88 99.17 96.56 98.33 97.19 100.00 96.88 98.33

2.8 0.4 99.1 105.2 100.00 107.50 99.64 105.00 99.29 102.50 100 105

2.8 0.6 100.01 110.7 101.43 103.33 101.43 103.33 102.14 105.00 101.43 103.33

2.8 0.8 97.01 99.88 98.93 98.75 98.93 98.75 98.57 98.75 99.29 98.75

2.8 1 94.35 104.9 98.93 98.00 98.93 98.00 99.64 100.00 98.93 98

2.8 1.2 94.95 105.74 99.29 98.33 99.29 99.17 99.29 100.00 99.64 98.33

Mean (%) 96.36 105.66 99.20 101.50 99.13 101.25 99.33 101.51 99.4 101.07

S.D 2.326 2.888 1.118 3.113 1.170 2.643 1.239 2.011 1.120 2.710

Table 6 Comparison of different error estimates of the four multivariate calibration methods

Method PLSR GA-PLSR GA-ANN PC-ANN

Drugs OLM AML OLM AML OLM AML OLM AML

RMSEC (μg mL−1) 0.0145 0.0094 0.0149 0.054 0.0169 0.0110 0.0159 0.0113

Parameters for RMSEC calculation Comps02 Comps02 Comps02 Comps02 Stated in Tables 2 and 3 Stated in
Tables 2 and 3

Stated in
Tables 2 and 3

Stated in
Tables 2 and 3

RMSEP (μg mL−1) 0.0411 0.0182 0.0437 0.0167 0.0411 0.0158 0.0378 0.0167

Parameters for RMSEP calculation Comps02 Comps02 Comps02 Comps02 Stated in Tables 2 and 3 Stated in
Tables 2 and 3

Stated in
Tables 2 and 3

Stated in
Tables 2 and 3

RMSECV (μg mL−1)a 0.0186 0.0114 0.0192 0.0065 – – – –

Parameters for RMSECV calculation Comps02 Comps02 Comps02 Comps02 – – – –

a Each of the two drugs is handled separately in all the models (i.e. a single concentration vector is used at a time)
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variables was a very important pre-construction step: if the
number of factors retained was more than required, more
noise would be added to the data; if the number retained was
too small, meaningful data that could be necessary for the
calibration might be discarded. Optimum number of latent
variables for PLS model was two (Table 6).

In GA-PLS method, the same procedures were applied
for construction of the model but PLS model was preceded
by GA procedure as variable selection to choose most
correlated wavelengths to the concentrations of the analytes.
A critical issue of successful GA performance is the adjust-
ment of GA parameters. Optimum parameters for genetic
algorithm were summarized in Table 2. The fitness values
were used as response variables for adjustment of these
parameters. The GA was run for emission spectra using a
PLS with maximum number of latent variables allowed is
the optimal number of components determined by cross-

validation on the model. FI matrix was reduced to about
one third for OLM and one fourth for AML (67 nm for
OLM and 18 nm for AML).The chosen wavelengths for
OLM are 302–303, 314–319, 326–331, 334–335, 338–
341, 350–353, 358–359, 366–367, 390–391, 394–95, 404–
405, 410–411, 414–417, 420–421, 424–427, 430–431, 440–
443, 452–453, 460–463, 468–471, 474–475, 478–479, 482
(totally, 67 nm) while that for AML are 416–423, 426–427,
436–437, 440–441, 444–445, 474–475 (totally, 18 nm).

The third and fourth methods depended on ANN approach.
Since the large number of nodes in the input layer of the
network (i.e. the number of wavelength readings for each
mixture) increases the CPU time for ANN modeling, the FI
matrix was reduced either by genetic algorithm (variable
selection procedure) to one third for OLM and one fourth
for AML (as in GA-PLS) or principal component analysis
(PCA) (variable compression procedure) to two principal
components. Thus two ANNs (GA-ANN and PC-ANN))
were applied in our work. The output layer is the concentra-
tion matrix of OLM or AML. The hidden layer consists of just
single layer which has been considered sufficient to solve
similar or more complex problems. Moreover, more hidden
layers may cause overfitting [54]. For proper modeling of
ANNs, different parameters should be optimized. These
parameters are summarized in Table 3. From the most impor-
tant parameters that should be optimized carefully, transfer
function pair. Choosing of transfer function depends on the
nature of data you work on. In our case, purelin-purelin
transfer function was implemented in our models due to linear
correlation between FI and concentrations.

After optimization of parameters and architectures of the
two ANNs, the training step is proceeded. ANNs were
trained by different training functions and there is no differ-
ence in performance (i.e. there is no decrease in root mean
square error of prediction (RMSEP)). Levenberg–Marquardt
training algorithm (TRAINLM) was thus preferred as it is
time saving. To avoid overfitting, the validation set was

Fig. 9 Bar plots for comparison of the RMSEP values obtained by
application of the proposed multivariate calibration methods for the
analysis of validation set

Table 7 Analysis results for the prediction of the dosage form by the proposed multivariate calibration methods

Dosge form PLSR GA-PLSR GA-ANN PC-ANN

Ratio True conc. (μg ml−1) OLM AML OLM AML OLM AML OLM AML

OLM AML OLM AML R% R% R% R% R% R% R% R%

4:1 1.6 0.4 101.13 101.02 99.66 100.59 99.50 101.38 101.04 100.75

2.4 0.6 99.47 98.427 97.64 99.156 99.44 98.98 99.58 99.01

3.2 0.8 99.25 100.51 98.49 100.31 98.75 100.92 99.38 100.38

2:1a 1.6 0.8 101.30 98.84 100.65 102.02 100.75 102.19 100.64 102.13

8:1a 3.2 0.4 98.31 99.14 98.60 100.09 99.00 100.09 99.71 99.58

Mean 99.89 99.59 99.01 100.43 99.14 100.37 100.07 100.71

S.D 1.285 1.119 1.165 1.038 0.319 1.195 0.727 1.231

a These ratios are synthetically prepared by addition of AML and OLM standards respectively to OLMESAR ® tablet extract
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involoved in training step and ANNs stops when RMSEP of
calibration set decreased and that of independent set
increased.

& Prediction ability of the multivariate calibration models

After optimization of parameters and calibration (training)
step, all models were applied for analysis of OLM and AML
in training set (Table 4) and in validation set (Table 5).
RMSEC, RMSEP and RMSCEV were calculated (Table 6).
RMSEC and RMSEP were calculated as same manner as
RMSECV but for calibration and validation set respectively.
RMSEP was used as a measure for performance of the pro-
posedmodels (Fig. 9) showing that the fourmethods predicted
OLM and AML successively in their binary mixtures. How-
ever GA-ANN was the efficient one for AML determination
as indicated by decreasing S.D of AML results in validation
set (Table 5).

The above mentioned models were applied for analysis of
OLM and AML in their pharmaceutical preparations in all
ratios that approved by FDA. But because OLMESAR tablets
(which contained 4 :1) were only available in our hand, OLM
and AML standard solutions were added to tablets extract to
prepare the other two ratios ( 8:1 and 2:1). It was clear from
Table 7 that all models were accurate and precise for both
OLM and AML determination. The results of the proposed
methods were statistically compared to the reference spectro-
scopic method [42] (Table 8). The t and F values were com-
puted and generally found to be less than the tabulated ones
indicating no significant difference with respect to accuracy
and precision. The t test results indicate no significant differ-
ence between the mean of the proposed method and the

reference method. The F test reflects no significant difference
between the variance of the selected methods and the refer-
ence one. Also ANOVA test was computed indicating that
there is no significant difference between the four multivariate
calibration methods.

Conclusion

Different calibration models have been applied for spec-
trofluorimetric determination of OLM and AML in their
binary mixtures. This paper showed the superiority of
the multivariate calibration over univariate calibration in
handling such spectrofluorimetric data. Univariate cali-
bration methods applied in this study were direct and
isoabsorpitive methods for determination of OLM and
AML respectively whereas, the multivariate methods
assayed were: PLS, GA-PLS, GA-ANN and PC-ANN
methods. These methods are considered powerful alter-
natives for traditional univariate methods, especially in
handling spectrofluorimetric data. GA as a variable se-
lection procedure increased predictive power of ANN
particularly in estimation of AML concentration.

The applied methods combine rapidness and simplicity
advantages of traditional spectrometric methods together
with other important analytical merits, such as sensitivity
and specificity. The suggested methods were validated and
can be applied for routine quality control analysis of OLM
and AML in their combined dosage forms in all FDA
approved ratios without prior separation or interference
from impurities/excipients.

Table 8 Statistical comparison of the results obtained by proposed chemometric methods and the reference method [42] for the analysis of
OLMESAR® tablets (Batch No. PM00058803)

Parameters PLSR GA-PLSR GA-ANN PC-ANN Reference Methoda

OLM AML OLM AML OLM AML OLM AML OLM AML

R% 101.13 101.02 99.66 100.59 99.50 100.75 101.04 101.38 99.14 98.25

99.47 98.43 97.64 99.156 99.44 99.01 99.58 98.98 100.35 99.71

99.25 100.51 98.49 100.31 98.75 100.38 99.38 100.92 100.35 100.78

101.30 98.84 100.65 102.02 99.01 102.13 100.64 102.19 98.38 100.29

98.31 99.14 98.60 100.09 99.00 99.58 99.71 100.09 98.70 98.64

Mean (%) 99.89 99.59 99.01 100.43 99.14 100.37 100.07 100.71 99.38 99.53

S.D 1.285 1.119 1.165 1.038 0.319 1.195 0.727 1.231 0.922 1.073

Variance 1.652 1.252 1.357 1.077 0.102 1.429 0.528 1.515 0.850 1.151

Number of samples 5 5 5 5 5 5 5 5 5 5

Student’s t statistic 0.718 0.077 0.566 1.347 0.193 1.164 1.307 1.613 – –

F ratio 1.942 1.088 1.596 1.069 1.431 1.242 1.611 1.317

ANOVA 1.552 0.882 1.552 0.882 1.552 0.882 1.552 0.882

For p00.05 and 4 ° of freedom the critical values of t and F are 2.306 and 6.388 respectively and F critical for Anova: single factor, 3 ° of freedom is 3.239
a Reference method is that published in the literature [42]
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